ПРАКТИЧЕСКИЕ ВОПРОСЫ ПРИМЕНЕНИЯ АДГЕЗИВОВ СИЛБОНД ДЛЯ НАДЕЖНОЙ СВЯЗИ ПОЛИУРЕТАНОВЫХ ЭЛАСТОМЕРОВ С РАЗЛИЧНЫМИ СУБСТРАТАМИ

С. И. Аболин, С. Б. Сивчиков

Работоспособность и ресурс изделий из полиуретанов с металлической или полимерной арматурой в значительной степени зависит от прочности адгезионного шва. Известно, что в полиуретановых композициях полярные NCO-группы обладают неплохим адгезионным потенциалом, особенно если субстратом выступают высокоэнергетические поверхности металлов. Однако на практике редко удается добиться высокой прочности соединения полиуретан-металл без применения специальных подслоев – адгезивов и тщательной подготовки поверхности субстрата. Этот факт связан с природой адгезионных сил, являющихся комбинацией механических, межмолекулярных и электрических взаимодействий.

Усилие при разрыве соединения, связанное с механическими взаимодействиями, зависит от шероховатости поверхности и характера микрорельефа, материал затекает в разнонаправленные поры и обеспечивает значительное сопротивление отрыву за счет этих микрозаклепок. Однако для хорошего затекания нужна низкая вязкость, хорошая смачиваемость поверхности субстрата и механическое воздействие, вытесняющие воздух из пор. Вязкие и быстротвердеющие полиуретаны не способны полностью реализовать преимущества рельефа, в то время как адгезионный подслой отличается низкой вязкостью, хорошо смачивает поверхность и наносится кистью, вытесняющей воздух. Кроме того, энергия межмолекулярных и электрических взаимодействий чрезвычайно зависит от расстояния между сопрягаемыми веществами. Полимерным молекулам из-за значительного размера и взаимодействия между собой в плотном веществе сложно подойти достаточно близко к активным центрам на поверхности субстрата, а низкомолекулярные активные компоненты адгезива диспергированные в подвижных растворителях свободно достигают поверхности контакта.

Активные компоненты подслоев подбираются таким образом, чтобы обеспечить максимальную адгезию как к субстратам, так и к заливаемым полиуретанам. Их состав обычно включает ингибиторы коррозии для предотвращения ее развития на поверхности раздела.

Таким образом, применение адгезивов способствует наилучшей реализации взаимодействий между полиуретаном и субстратом и повышает адгезионную прочность соединения.

Силбонд 49 СФС и Силбонд 41 С, пожалуй, наиболее применяемые в России адгезивы для полиуретанов горячей и холодной полимеризации. В данной статье мы решили обобщить почти 25-летний опыт применения данных адгезивов на собственном производстве.

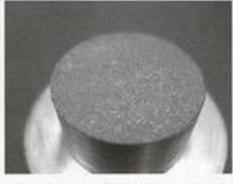
1. Подготовка субстрата

В качестве арматуры для полиуретанового изделия в 90% случаев применяются металлы. Для черных металлов наилучшим способом обработки является дробеструйная очистка, она обеспечивает многократное увеличение площади контакта, обеспечивает пористость поверхности, убирает загрязнения и окислы, способствует созданию активных центров. Перед обработкой деталь обязательно проходит предварительную очистку в ванне с уайт-спиритом для снятия пластичных смазок и эмульсий со всех поверхностей. Дробь чугунная колотая 0,8 мм используется обычно в замкнутом цикле. Важно обеспечить своевременную замену потерявшей остроту дроби. Обработку производят до достижения бархатистой, матовой поверхности, наличие областей с металлическим блеском не допускается. Особенное внимание – граничным зонам, для защиты необрабатываемых поверхностей используются маски из полиуретана. Необходи-

мы регулярные проверки чистоты сжатого воздуха из компрессора — наличие следов масла или воды недопустимо. Для обработки чугуна и закаленных сталей мы используем электрокорунд, хотя его применение, из-за большого количества пыли, требует особо тщательной промывки изделия после обработки. Рекомендуемые способы обработки и максимальное время до нанесения адгезива представлены в таблице 1;

Субстрат	Способ обработни	Максимальное время выдержки от окончания обработки до нанесения адгезива, мин
Черные метаплы	Дробь чугунная колотая	180
Нержавеющая сталь	Дробь чугунная колотая	30
Сплавы алюминия	Дробь чугунная колотая	30
Сплавы алюминия при эксплуатации в корозионноактивной среде	Электрокорунд	30
Бронза и сплавы меди	Дробь чугунная + обработка персульфатом аммония	180
Полиамид	Дробь при пониженном давлении	

2. Промывка субстрата


По окончанию обработки проводится промывка металлических поверхностей жесткой кистью для удаления пыли и остатков дроби. По результатам испытаний наиболее стабильный результат дает обработка ацетон-толуольной смесью. Чистый ацетон взрывоопасен и дает охлаждение поверхности, которое может вызвать конденсацию влаги и ухудшение адгезии, кроме того высокая летучесть не позволяет тщательно промыть детали, С другой стороны, использование чистых толуола или ксилола требует слишком длительной сушки. Допускается применение растворителя 646, при обязательном тесте на испарение с поверхности зеркала. После высыхания растворителя, наличие капель воды или масляных разводов не допускается. Бензин, керосин обычно содержат примеси парафинов и масел, а спирт - воду, поэтому их использование не рекомендуется. Обдув газообразным азотом экологичен, дает достаточно высокие, но нестабильные показатели, из-за сложности контроля за полнотой обработки. Обдув - хорошее решение для серийной продукции с использованием автоматических или полуавтоматических установок с вращением заготовок. Данные по разрывному усилию при равномерном отрыве (50 мм/мин, грибки Ст3, Гермокаст 53/65 твердость 65 Шор А, 2 мм) при применении различных растворителей представлены в таблице 2:

	646 p-ns	Ацетон- толуольная смесы (1/2),	Продувка азотом, тех	Метиленхло- рид. тех
Разрушающее наприжение при равномерном отрыве, МПа	9,5±1,5	10,5±1,0	8,5±2,5	9,0±1,0

Сушка перед нанесением адгезива обычно занимает 15-20 мин.

3. Нанесение адгезива

Наиболее экономичным и надежным способом нанесения Силбонда является окрашивание арматуры кистью. Не реко-

мендуется разбавление адгезива, вязкость поставки обеспечивает комфортную работу. После нанесения изделие должно иметь выраженную красноватую окраску — не следует минимизировать слой, однако капли и потеки на поверхности тоже не допустимы. Для сушки на воздухе достаточно 20–40 мин. Не используйте ускоренную сушку при повышенной температуре, т. к. она приводит к вспениванию слоя.

4. Выбор адгезива и способа его применения

Базовый выбор — это Силбонд 49 СФС для полиуретанов с температурой полимеризации выше 80 °С и Силбонд 41 С для систем «холодной полимеризации». Многообразие систем и технологических процессов диктуют особенности использования адгезивов. Наши рекомендации для основных применений представлены в таблице 3:

Применение	именение Адгезия	
1. Полиуретаны горячей полимеризации, продуждия общего назначения	Силбонд 49 СФС сушка на воздухе 30 мин, разогрев до рабочей температуры, заливка	8 часов
2. Горячая полимеризация, ответственная или тяжело нагруженная продужция	ризация, Первый слой Силбонд 49 СФС венная или сушка на воздухе, запекание 1,5-2 часа при 100-110 °C	
3. Термопластичные полиуретаны	Силбонд 49 СФС, сушка на воздухе, минимальный разогрев до рабочей температуры и впрыск. Требует тщательного подбора режимов разогрева и литыя	8 часов
4. Ротационное литье, Литье крупногабаритных отливок «Холодные системы»	Смесь Силбонд 49 СФС 10 вес. частей +1 часть Гермокаста 5001 (Силкьюр 8) сушка на воздухе 30 мин	1-3 vaca
Холодные и горячие системы, требующие эластичного адгезионного слоя (кабель, ткакь и т. п.)	Силбонд 41 С сушка на воздуке 30 миня	1-3 часа

5. Результаты испытаний различных методов применения адгезивов

Результаты испытаний (равномерный отрыв, грибки Ст3, Гермокаст 53/65,2 мм) с комментариями, на основании которых сформированы рекомендации по применению, представлены в таблице 4:

Адгезия	Режим подготовки	Разрынное усыние, Мпа	Комментарии
CB 49 COC	Сушка 40 мин на воздухе, Разогрев до 80°С, заливка	9,5	Базовый процесс
CB49 CΦC + Γερмохаст 5001 (10/1)	Сушка 40 мин на воздухе Разогрев до 80°C, запивка	10,5	Выше результат, но короче хранение. Смесь реактивна!
C8 49 CΦC	Сушка 40 мин на воздухе, Запекание 2 часа при 100°C	9,5	Результат как у базового процесса, доп. операция не оправдана
СВ 49 СФС	Первый слой, сушка 20 °С, Второй слой без запекания первого, сушка, разогрев	6.5	Значительное снижение адгезии. Наносить второй слой адгезива без запекания первого нельзя!
CB 49 CΦC	Первый слой сушка 40 мин. Запекание 2 часа при 100 °С. Второй слой, сушка 20 °С	14,5	Двухслойное покрытие увеличивает прочность соединения в 1,5 раза
C8 49 CΦC	Сушка 40 мин на воздухе Хранение 48 часов на воздухе, заливка	6,6	Хранение незапеченной арматуры уменьшает адгезию
C8 49 CΦC	Арматура после дробеструя 24 часа в закрытом контейнере, далее базовый процесс	5.7	Чем больше период от обработки до нанесения — тем ожидаемо ниже адгезия

Приведенные в статье сведения, конечно, не могут отразить всю широту возможных применений, технологических процессов и приемов. По конкретным условиям применения адгезивов Силбонд вы можете обратиться к специалистам фирмы «С.П.Б.», которые помогут подобрать наилучшее решение для той или иной задачи.

000 "C.N.S."

194156, Санкт-Петербург, пр. Энгельса, д. 27, корп. 5, лит. A www.polyurethane-spb.ru, www.spbcorp.ru abolin@spbcorp.ru

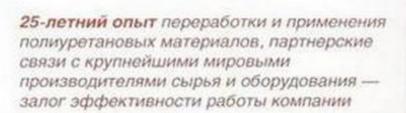
Тел./факс: (812) 326-38-32, 326-38-33

Комплексные решения по организации производства изделий из ПОЛИУРЕТАНОВЫХ ЭЛАСТОМЕРОВ

Поставка ПУ-композиций для выпуска любых изделий

 Оптимальный подбор оборудования (для переработки МДИ, ТДИ, для закачки шин, вакуумзаливочные камеры)

Запуск проверенных технологических процессов


Производство продукции из ПУ-систем

000 «С.П.Б.»

194156 РФ, г. Санкт-Петербург пр. Энгельса, 27, корп. 12в Тел.: +7 (812) 3263832, 3263833 E-mail: sales@spbcorp.ru

www.polyurethane-spb.ru www.spbcorp.ru

